Towards a Cardiovascular-Kidney-Metabolic prevention approach

The European Renal Association (ERA) strongly welcomes the upcoming EU Cardiovascular Health Action Plan. Recognising that cardiovascular disease (CVD) serves both as a leading health burden in itself and as a critical risk factor for chronic kidney disease (CKD) and other metabolic conditions, we fully support the EU's coordinated efforts to curb CVD morbidity and mortality.

The prevalence of CKD is rising rapidly (850 million people worldwide¹, 100 million in Europe). As highlighted by the WHO², CKD is among the fastest-growing causes of death, projected to be the **third leading cause of death in high-income countries by 2050**³. Most of the increased mortality risk observed in patients with CKD is due to CVD⁴ ⁵.

Indeed, CKD is a potent and independent risk factor for CVD. Individuals with CKD face elevated risks of developing CV death, coronary artery disease, stroke, heart failure, atrial fibrillation, peripheral vascular disease and sudden cardiac death^{6 7 8}.

Increased CV risk begins with even low levels of renal impairment and in people with normal kidney function and mildly increased albuminuria. The risk then increases exponentially with both worsening renal function and increasing albuminuria with the highest risk in those with both⁴⁵. There is a biological plausibility underlying a cause-and-effect relationship between CKD and CVD, supported by clinical trials^{9 10 11 12 13}.

Among patients with advanced CKD (stages 4–5), the prevalence of CVD is \sim 50%, with CV causes accounting for 40–50% of total mortality, compared with 26% in the general population 14 .

Thus, CKD should be regarded both as a likely consequence of CVD and as a crucial contributor to the overall CVD burden.

This has been recognised by the European Society of Cardiology and 12 European Scientific Societies, which identified CKD, along with diabetes and familial hypercholesterolaemia, as three conditions requiring targeted primary prevention to reduce CVD risk¹⁵ ¹⁶. Moreover, the American Heart Association conceptualised the **Cardiovascular-Kidney-Metabolic (CKM) syndrome** to emphasise the close links between overweight-obesity, type 2 diabetes mellitus, kidney health and CV health¹⁷.

It is imperative that CVD, CKD and diabetes be addressed in an integrated manner —as **CKM syndrome**— to effectively tackle the shared and interrelated drivers of CV and related conditions, as recommended by cardiology¹⁵ ¹⁷, diabetes and renal⁶ ¹⁶ scientific associations, the Council⁷ and the WHO².

The ERA has recently developed the ABCDE framework for the holistic assessment of CKM health, that can be adapted to the different national health care systems.

ABCDE stands for

- Albuminuria
- Blood pressure
- Cholesterol
- Diabetes (i.e., glycemia)
- Estimated glomerular filtration rate^{4 5 16 18}

i.e., for one urine test, one physical examination feature, and three blood analytes that allow to correctly fit individuals into major categories in the CKM spectrum requiring specific drug interventions for the primary prevention of CVD, according to the 2021 ESC guidelines¹⁵. It summarises the CKM assessments that should be provided by the healthcare system, as other key elements to assess CKM health can be self-assessed such as the body mass index, the smoking status and lifestyle.

In conclusion:

- 1. All patients at risk of CKD should be screened for CKM health using the ABCDE approach:
 - Albuminuria: readily quantifiable from a spot urine sample as the urinary albumin:creatinine ratio (uACR)
 - Blood pressure: measured as per national or international guidelines (eg ESC BP Guidelines)
 - Cholesterol: lipid profile (total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides)
 - Diabetes: random and/or fasting plasma glucose in addition to a HbA1c measured in a blood test
 - Estimated glomerular filtration rate; calculated from a serum creatinine using a validated equation
- 2. Evidence shows that screening for CKD using albuminuria is cost-effective, at least in those aged >45¹⁹.

¹ Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34(11):1803-1805. doi:10.1093/ndt/gfz174.

World Health Organization. Resolution WHA78.6 Reducing the burden of noncommunicable diseases through promotion of kidney health and strengthening prevention and control of kidney disease (2025), https://apps.who.int/gb/ebwha/pdf_files/WHA78/A78_R6-en.pdf.

Vollset, Stein Emil et al. Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. The Lancet, Volume 403, Issue 10440, 2204 – 2256.

⁴ Ferro CJ, Wanner C, Luyckx V, et al. ABCDE to identify and prevent chronic kidney disease: a call to action. Nephrol Dial Transplant. Published online March 19, 2025. doi:10.1093/ndt/gfaf057.

Ferro CJ, Wanner C, Luyckx V, et al. A call for urgent action on chronic kidney disease across Europe. Lancet Reg Health Eur. 2025;54:101347.

⁶ Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117-S314.

⁷ Council of the European Union, Council Conclusions on the improvement of cardiovascular health in the European Union, 14 November 2024, https://data.consilium.europa.eu/doc/document/ST-15315-2024-INIT/en/pdf.

⁸ Writing Group for the CKD Prognosis Consortium. Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes: An Individual-Participant Data Meta-Analysis. *JAMA*. 2023;330(13):1266–1277. doi:10.1001/jama.2023.17002

⁹ Fernandez-Fernandez B, Izquierdo MC, Valiño-Rivas L, et al. Albumin downregulates Klotho in tubular cells. Nephrol Dial Transplant. 2018;33(10):1712-1722. doi:10.1093/ndt/gfx376.

- Noels H, Jankowski V, Schunk SJ, Vanholder R, Kalim S, Jankowski J. Post-translational modifications in kidney diseases and associated cardiovascular risk. Nat Rev Nephrol. 2024;20(8):495-512. doi:10.1038/s41581-024-00837-x.
- Agarwal R, Tu W, Farjat AE, et al. Impact of Finerenone-Induced Albuminuria Reduction on Chronic Kidney Disease Outcomes in Type 2 Diabetes: A Mediation Analysis. Ann Intern Med. 2023;176(12):1606-1616. doi:10.7326/M23-1023.
- ¹² Zou X, Shi Q, Olav Vandvik P, et al. Sodium-glucose co-transporter-2 inhibitors in patients with chronic kidney disease with or without type 2 diabetes: systematic review and meta-analysis. BMJ Med. 2024;3(1):e001009. Published 2024 Oct 1.
- ¹³ McDonagh TA, Metra M, Adamo M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44(37):3627-3639. doi:10.1093/eurheartj/ehad195.
- Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021;143(11):1157-1172 https://doi.org/10.1161/CIRCULATIONAHA.120.050686.
- Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice [published correction appears in Eur Heart J. 2022 Nov 7;43(42):4468.
- Ortiz A, Wanner C, Gansevoort R; ERA Council. Chronic kidney disease as cardiovascular risk factor in routine clinical practice: a position statement by the Council of the European Renal Association. Nephrol Dial Transplant. 2023;38(3):527-531. doi:10.1093/ndt/gfac257.
- Ndumele CE, Rangaswami J, Chow SL, et al. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. *Circulation*. 2023;148(20):1606-1635.
- Ortiz A, Quiroga B, Díez J, et al. The Spanish Scientific Societies before the ESC 2021 guidelines on vascular disease prevention: Generalizing the measurement of albuminuria to identify vascular risk and prevent vascular disease. Nefrologia (Engl Ed). 2023;43(2):245-250. doi:10.1016/j.nefroe.2023.06.005.
- Pouwels X, van Mil D, Kieneker LM, et al. Cost-effectiveness of home-based screening of the general population for albuminuria to prevent progression of cardiovascular and kidney disease. *EClinicalMedicine* 2024; 68: 102414.